
C++17/20/23/26 for old C++ Developers: STL
C++14 implementation of latest STL, compatible with the old compilers and existing STL

#define require(...) \
 typename decltype(preview::resolve_require(__VA_ARGS__))::valid = true

template<typename T, typename U, require(
 (preview::integral<T> || preview::floating_point<T>) &&
 preview::signed_integral<U>
)>
void foo(T, U) {}

foo("hello, C++", 20); // compile error!

Without C++20, implementing a real concept is impossible. All concepts
introduced in C++20 and C++23 are implemented in a type_traits-like struct and
used in the many other libraries of STL-Preview.

However, providing meaningful error messages - one of the core functionality
of the concept - is still possible before C++20. Below is an example using
concept-v2. Concept-v2 is in the optimization process and will replace the
existing concept in the project once completed. They defaults to real concept if
using C++20 or custom macro is defined.

/preview/test/concepts_v2.cc:8:1: error: no matching function for call to 'foo’
foo("hello, C++", 20);
^~~
/preview/test/concepts_v2.cc:6:6: note: candidate template ignored: substitution
failure
[with T = const char *, U = int]: no type named 'valid' in
'constraints_not_satisfied<integral<const char *>, at<0, 3>,
because<constraints_not_satisfied<integral<const char *>, at<0, 1>,
because<std::is_integral<const char *>, is_false>>>,
and_,
floating_point<const char *>, at<1, 3>,
because<constraints_not_satisfied<floating_point<const char *>, at<0, 1>,
because<std::is_floating_point<const char *>, is_false>>>
>' void foo(T, U) {}

* Linebreak depends on your environment
* Lexical type name will be optimized(i.e., remove at<0, 1> and nested constraints_not_staisfied)

How concept-v2 works
// Simple concept of the mechanism. Actual implementation is more complex.

template<typename Constraints, typename... Information>
struct constraints_not_satisfied : std::false_type {};

// Good-old CRTP
template<typename Derived, typename Base>
struct concept_base : Base {
 /* operator&&, operator|| and operator! are defined, which returns
 * True<N> or constraints_not_satisfied<Ci, at<i, N>, because<...>>
 */
};

// Define a basic concept
template<typename T>
struct integral_c : concept_base<integral_t<T>, std::is_integral<T>> {};
template<typename T>
inline constexpr integral_c<T> integral;

// Same if-else-endif macro
// Define a nested concept
template<typename T>
struct signed_integral_c : concept_base<signed_integral_c<T>, decltype(
 integral<T> && std::is_signed<T>{}
)> {};
template<typename T>
inline constexpr signed_integral_c<T> signed_integral;

// Equal to True<2> which inherits std::true_type
static_assert(integral<int> || integral<int>);

// Equal to
// constraints_not_satisfied<signed_integral<float>, at<1, 2>, because<...>>
// which inherits std::false_type
static_assert(integral<int> && signed_integral<float>);

Introduction Concept

Since the introduction of modern C++ in 2011, the
language has seen numerous enhancements,
particularly in compiler support and the STL.
But are you using the latest C++ version for your project?
Then you must be lucky! According to 2024 Annual C++
Developer Survey “Lite” by ISOCPP, only 31% replied
“Are you using C++20?” with yes. The response includes
personal project and students, so it is likely that real-
world project has much more strict version policies.

In such cases, STL-Preview can help you use the latest
STL regardless of your C++ version and compiler.

namespace ranges = preview::ranges;
namespace views = preview::views;

// m = {{0, 'A'}, {1, 'B'}, {2, 'C'}, {3, 'D'}}
auto m = views::iota('A', 'E') | views::enumerate |
 ranges::to<std::map>;

// This includes views::iota introduced in C++20,
// ranges::to introduced in C++23,
// CTAD introduced in C++17 and
// pair-like to std::pair conversion introduced in C++23.
// All available in C++ 14!

STL-Preview is not meant to be a competitor to the
standard library. Its primary role is to serve as a bridge to
the latest standard, bridging the gap for industries.
Users can simply change preview:: to std:: whenever
they decide to upgrade their C++ version or compiler
and use the standard library.
Because of the reasons stated above, STL-Preview not
only focuses on implementing the latest standard but
also makes it compatible with existing STL.

Other alternative standard libraries like Boost, ranges-v3
and abseil-cpp may provide more functionalities or
something that STL-Preview doesn't provide. However,
these libraries do not strictly conform to the standard
and are not always compatible with existing STL.
All implementation of STL-Preview strictly conforms to
the standard - no less, no more - which makes it a better
choice when compatibility and simplicity are crucial.
Plus, there is no learning curve if you know STL already.

Why STL-Preview ?

Features

• Provides the latest C++ standard (23 or 26) if possible
• Compatible with existing STL
• Cross-platform, standalone
• Strictly conforms the standard
• List of libraries (still work in progress)

• concepts (30/30)
• expected (4 / 4)
• numbers (13 / 13)
• optional (7 / 7)
• span (4 / 4)
• string_view (4 / 4)
• variant (9 / 9)
• iterator (57 / 59)

• ranges (76 / 82)
• algorithm (53/115)
• functional (10/16)
• memory (9 / 43)
• type_traits (17 / 26)
• utility (7 / 8)
• ...

Contribution / Future
This is an open-source project and is still in development. All types of
contributions are welcomed! Feel free to criticize, report a bug, open a PR or just
give a like :)
The goal of this year is to release C++20 except for concurrency libraries.

C++17/20/23/26 for old C++ Developers: STL-Preview
github.com/lackhole/stl-preview linkedin.com/in/yonggyu-lee/

Tony Lee | cosgenio@gmail.com

Iterator

Limitations

Checking if given random_access_iterator also models contiguous_iterator
is not always 100% accurate without std::contiguous_iterator_tag which
was introduced in C++20(i.e, std::vector<bool>::iterator,
std::deque::iterator). All iterators defined in std are manually checked,
but user-provided iterators may produce false negative results. Thus, ranges
library that provides a specialized algorithm(e.g., preview::ranges::copy_n)
doesn’t trust preview::contiguous_iterator if the tag is not defined in std
unless it is a raw pointer.

preview::contiguous_range is implemented without a false behavior.

Iterator is one of the core libraries of STL, categorizing iterators using
std::iterator_traits. However, std::iterator_traits is not SFINAE-
friendly until C++17 and conditionally SFINAE-friendly until C++20.

For STL-Preview to be compatible with pre-C++20 STLs, all post-C++20
iterators must define all five typedefs. This also includes iterators of
views(e.g., preview::views::iota_view::iterator).

The opposite case - using pre-C++20 STLs with STL-Preview - can be handled
easily. Thankfully, the typedefs of C++20 iterator_traits doesn’t directly rely
on iterator’s typedefs, so specializing preview::incrementable_traits is
enough for old iterators(e.g., std::back_insert_iterator,
std::ostream_iterator).

STL-Preview defines its iterator_traits, so it is self-consistent(of course).

contiguous_iterator

A requires clause can also set constraints on template specializations.
Specializations are selected only if the constraints are satisfied; otherwise,
the primary template is used as a fallback.

Branching typedefs are insufficient in this case, as the reasons stated above
section. This complex situation cannot be handled correctly before C++20.

This limitation only applies when mixed usage of STL-preview and existing
STL before C++20.

Constraints on specialization of iterator_traits

The Core functionality of the iterator library also depends on whether
iterator_traits<I> is a primary template(e.g., iter_difference_t,
iter_value_t, ITER_CONCEPT). All iterator_traits<I> defined in std are
manually checked, but user-specializations cannot be checked(although
some STL provides a non-portable way). Hope std::is_primary_template will
be proposed in the future…

But hey, do you specialize std::iterator_traits for your iterator?

Detecting if iterator_traits<I> is primary template

*Note: typedefs not defined in the standard are removed if using C++20 or later

Supported(Tested) Compilers

Minimum version tested Maximum version tested

MSVC 19.29.30154.0
(Visual Studio 2019)

19.40.33811.0
(Visual Studio 2022)

GCC 9.5.0 13.1.0

Clang 11.1.0 15.0.7

Apple Clang 14.0.0.14000029 15.0.0.15000040

Android NDK r18 (Clang 7.0) r26 (Clang 17.0.2)

Emscripten 3.1.20 (Clang 16.0) 3.1.61 (Clang 19.0.0)

MinGW 13.1.0 14.2.0

Intel C++ Not tested yet 2024.2.1

Table: tested compilers (versions not listed here may work)

Ranges

Utility Libraries

Concurrency Libraries

Although ranges library is one of the main implementation
targets, only 93% of <ranges> and 46% of <algorithm> have
been implemented so far due to its extensive amount(~140 /
~200).
Ranges are determined by ADL-or-member functions(e.g.,
begin, end), it is compatible with STL seamlessly (if STL is
implemented correctly!).

// Mixing C++20 STL and C++23 STL-Preview
auto m = std::views::iota('A', 'E')
 | preview::views::enumerate
 | preview::ranges::to<std::map>;

• bind_front, bind_back
• optional

• Monadic operations
• span

• C++23/26 operations
• string_view

• Member search

• variant
• Member visit

• rel_ops
• C++20 operator synthesis
• All comparisons in STL-

Preview relies on this
• expected

Following utility libraries are implemented so far. Although
C++26 standard is not complete, these libraries are being
updated if announced.

All concurrency libraries introduced after C++20 rely on
atomic wait/notify operations, but implementing these
operations compatible with std::atomic is impossible(i.e., gcc
defines atomic implementation as private) without
performance loss. Implementing the entire atomic is
required, which is far from the purpose of STL-Preview. Maybe
a wrapper of Boost.Atomic can be a solution, but haven't
decided yet.

preview::ranges::to does unspecified conversion
operations, so it is equipped with C++23 conversions if
possible(i.e., pair-like to std::pair).
While evaluating CTAD(limited CTAD in C++14), std::tuple to
std::pair is found to be valid thus deduced to std::map<int,
char>, with additional preview::views::transform layer if the
conversion is not provided by STL(Clang provides this
conversion since C++11)

	슬라이드 1
	슬라이드 2

