C++17/20/23/26 for old C++ Develope

C++14 implementation of latest STL, compatible with the old compilers and existing STL

Since the introduction of modern C++in 2011, the
language has seen numerous enhancements,
particularly in compiler support and the STL.

But are you using the latest C++ version for your project?
Then you must be lucky! According to 2024 Annual C++
Developer Survey “Lite” by ISOCPP, only 31% replied
“Are you using C++207” with yes. The response includes
personal project and students, so it is likely that real-
world project has much more strict version policies.

In such cases, STL-Preview can help you use the latest
STL regardless of your C++ version and compiler.

Without C++20, implementing a real concept is impossible. All concepts
iIntroduced in C++20 and C++23 are implemented in a type_traits-like struct and
used in the many other libraries of STL-Preview.

However, providing meaningful error messages - one of the core functionality
of the concept - is still possible before C++20. Below is an example using
concept-v2. Concept-v2 is in the optimization process and will replace the
existing concept in the project once completed. They defaults to real concept if
using C++20 or custom macro is defined.

namespace ranges = preview: :ranges;
namespace views = preview: :views;

// m

auto m

{{@) IA'}) {1J IB'}) {2) ICI}) {3) IDI}}
= views::iota('A', 'E') | views::enumerate |
ranges: :to<std: :map>;

// This includes views::1iota introduced in C++20,

// ranges::to introduced in C++23,

// CTAD introduced in C++17 and

// pair-LikRe to std::pair conversion introduced in C++23.
// All available in C++ 14!

#define require(...) \
typename decltype(preview::resolve require(VA ARGS))::valid = true

template<typename T, typename U, require(
(preview: :integral<T> || preview::floating point<T>) &&
preview: :signed integral<U>

)>
void foo(T, U) {}

foo("hello, C++", 20); // compile error!

/preview/test/concepts v2.cc:8:1: error: no matching function for call to 'foo’

foo("hello, C++", 20);

N\

~NoN

/preview/test/concepts v2.cc:6:6: candidate template ignored: substitution

Why STL-Preview ?

STL-Preview is not meant to be a competitor to the
standard library. |Its primary role is to serve as a bridge to
the latest standard, bridging the gap for industries.
Users can simply change preview:: to std:: whenever
they decide to upgrade their C++ version or compiler
and use the standard library.

Because of the reasons stated above, STL-Preview not
only focuses on implementing the latest standard but
also makes it compatible with existing STL.

Other alternative standard libraries like Boost, ranges-v3
and abseil-cpp may provide more functionalities or
something that STL-Preview doesn't provide. However,
these libraries do not strictly conform to the standard
and are not always compatible with existing STL.

All implementation of STL-Preview strictly conforms to
the standard - no less, no more - which makes it a better
choice when compatibility and simplicity are crucial.
Plus, there is no learning curve if you know STL already.

* Provides the latest C++ standard (23 or 26) if possible
« Compatible with existing STL

 Cross-platform, standalone

e Strictly conforms the standard

* Listof libraries (still work in progress)

* concepts (30/30) * ranges(/6/82)

* expected(4/4) * algorithm (53/115)
* numbers (13/13) * functional (10/16)
 optional(7/7) * memory (9/43)

* span(4/4) * type_traits (17 / 26)
* string_view (4/4) o utility (7/ 8)

* variant(9/9) .

* |terator (57 /59)

failure

[with T = const char *, U = int]: no type named 'valid' in
‘constraints not satisfied<integral<const char *>, at<o, 3>,
because<constraints not satisfied<integral<const char *>, at<o, 1>,
because<std: :is integral<const char *>, is false>>>,

and_,

floating point<const char *>, at<l, 3>,
because<constraints not satisfied<floating point<const char *>, at<o, 1>,
because<std: :is floating point<const char *>, 1s false>>>

>' void foo(T, U) {}

* Linebreak depends on your environment
* Lexical type name will be optimized(i.e., remove at<@, 1> andnested constraints not staisfied)

How concept-v2 works

// Simple concept of the mechanism. Actual implementation is more complex.

template<typename Constraints, typename... Information>
struct constraints not satisfied : std::false type {};

// Good-old CRTP
template<typename Derived, typename Base>
struct concept base : Base {
/* operator&&, operator|| and operator! are defined, which returns
* True<N> or constraints not satisfied<Ci, at<i, N>, because<...>>
*/
}s

// Define a basic concept

template<typename T>

struct integral c : concept base<integral t<T>, std::is _integral<T>> {};
template<typename T>

inline constexpr integral c<T> integral;

// Same if-else-endif macro

// Define a nested concept

template<typename T>

struct signed integral c : concept base<sighed integral c<T»>, decltype(
integral<T> && std::is signed<T>{}

)> {};

template<typename T>

inline constexpr signhed integral c<T> signed integral;

// Equal to True<2> which inherits std::true type
static _assert(integral<int> || integral<int>);

// Equal to

// constraints not satisfied<signhed integral<float>, at<l, 2>, because<...>>
// which inherits std::false type

static _assert(integral<int> && signed integral<float>);

Contribution / Future

This is an open-source project and is still in development. All types of
contributions are welcomed! Feel free to criticize, report a bug, open a PR or just
give a like)

The goal of this year is to release C++20 except for concurrency libraries.

s: STL-Preview : 9024 ASA

September 15-20
The C++ Conference | Aurora, Colorado, USA

Tony Lee | cosgenio@gmail.com

github.com/lackhole/stl-preview

C++20? Don't ever
Think about it!

Iterator is one of the core libraries of STL, categorizing iterators using
std::iterator traits. However, std::iterator traitsis not SFINAE-
friendly until C++17 and conditionally SFINAE-friendly until C++20. Yedh. we cdn now Mdj be in 2030s...

eat RUST!)
-

C++29? That's a slolg!

For STL-Preview to be compatible with pre-C++20 STLs, all post-C++20 -

iterators must define all five typedefs. This also includes iterators of
views(e.g., preview: :views: :iota view::iterator). s
*Note: typedefs not defined in the standard are removed if using C++20 or later \
W / \

The opposite case - using pre-C++20 STLs with STL-Preview - can be handled
easily. Thankfully, the typedefs of C++20 iterator_traits doesn’t directly rely
on iterator’s typedefs, so specializing preview::incrementable_traits is
enough for old iterators(e.g., std: :back_insert_iterator,

std::ostream_iterator).

STL-Preview defines its iterator_traits, so it is self-consistent(of course).

Limitations

contiguous_iterator

Although ranges library is one of the main implementation

targets, only 93% of <ranges> and 46% of <algorithm> have
Checking if given random_access_iterator also models contiguous iterator been implemented so far due to its extensive amount(~140 /

Is not always 100% accurate without std: :contiguous iterator tag which ~200).
was introduced in C++20(i.e, std: :vector<bool>::iterator,

std::deque: :iterator). All iterators defined in std are manually checked,
but user-provided iterators may produce false negative results. Thus, ranges
library that provides a specialized algorithm(e.g., preview: : ranges: :copy_n) - :
doesn’t trust preview: :contiguous _iterator if the tagis not defined in std gﬁtglzlzgsizf\@/izat:?ggtEZTi?,STETF;PEVleW

unless it is a raw pointer. | preview::views: :enumerate
| preview: :ranges: :to<std: :map>;

Ranges are determined by ADL-or-member functions(e.g.,
begin, end), itis compatible with STL seamlessly (if STL is
Implemented correctly!).

preview: :contiguous range is implemented without a false behavior. . o ,
preview: :ranges::to does unspecified conversion

Detecting if iterator_traits<I> is primarytemplate operations, so itis equipped with C++23 conversions if
possible(i.e., pair-like to std: : pair).

While evaluating CTAD(limited CTAD in C++14), std: :tuple to
std::pair is found to be valid thus deduced to std: :map<int,

The Core functionality of the iterator library also depends on whether
iterator_traits<I>is aprimarytemplate(e.g., iter difference_t,

iter value_t, ITER CONCEPT). All iterator traits<I> definedin std are
manually checked, but user-specializations cannot be checked(although
some STL provides a non-portable way). Hope std::is _primary template will
be proposed in the future...

char>, with additional preview: :views: :transform layer if the
conversion is not provided by STL(Clang provides this
conversion since C++11)

But hey, do you specialize std: :iterator_traits for your iterator?

Constraints on specialization of iterator_traits

| . o Utility Libraries
A requires clause can also set constraints on template specializations.

Specializations are selected only if the constraints are satisfied; otherwise,
the primary template is used as a fallback.

Following utility libraries are implemented so far. Although
C++26 standard is not complete, these libraries are being

. updated if announced.
Branching typedefs are insufficient in this case, as the reasons stated above P

section. This complex situation cannot be handled correctly before C++20. * bind_front, bind_back * variant
* optional * Member visit
This limitation only applies when mixed usage of STL-preview and existing * Monadic operations * rel_ops
STL before C++20. * span e C++20 operator synthesis
e C++23/26 operations * All comparisonsin STL-
* string_view Preview relies on this
* Member search * expected

Supported(Tested) Compilers

Concurrency Libraries

Minimum version tested Maximum version tested
MSVC 19.29.30154.0 19.40.33811.0
(Visual Studio 2019) (Visual Studio 2022) All concurrency libraries introduced after C++20 rely on
GCC 9.5.0 13.1.0 atomic wait/notify operations, but implementing these
Clang 1110 15:0.7 operations compatible with std::atomic is impossible(i.e., gcc
Apple Clan 14.0.0.14000029 15.0.0.15000040
PP & defines atomic implementation as private) without
Android NDK r18 (Clang 7.0 r26 (Clang 17.0.2
_ (Llang 7.0) (Llang) performance loss. Implementing the entire atomic is
Emscripten 3.1.20 (Clang 16.0) 3.1.61 (Clang 19.0.0) , , , ,
Ry 310 190 required, which is far from the purpose of STL-Preview. Maybe
a wrapper of Boost.Atomic can be a solution, but haven't
Intel C++ Not tested yet 2024.2.1

decided yet.

Table: tested compilers (versions not listed here may work)

	슬라이드 1
	슬라이드 2

